Power Bridge Project

∼ The 8th Japan − Russia Energy and Environment Dialogue in Niigata

November 4, 2015 in Niigata

Dr. Ryosuke Fukuda
Guest Professor, Chubu University

Utilization of Natural Resources in East-Siberia for Electricity

Plan of Electric Power Interconnection between Japan & Russia

Potential Hydro Power

Lena

Enisej

Angara

Kolyma

Indigirka

Hatanga

Ob

Total

Amur

1840

1820

1400

1000

810

620

610

570

Electric Interconnection of 4GW between Sakhalin and Japan **Power Bridge Project**

PPLP (Polypropylene Laminated Paper)

Comparison of Electric Breakdown Strength between Kraft and Film

Relation between Imp. BD and DC BD

DC & Imp. BD Strengths of PPLP & Kraft

Underground Transmission Cables

Test on PPLP 800kV Solid (MI) DC Cable at SEI's Kumatori Testing Station

Construction

*Cond.: 2.000mm²

*Insulation: Kraft/PPLP-A(PP ratio: 40%)/Kraft

*Thickness: 24mm

*Insulation Oil: Medium Viscosity Oil

	Conventional Kraft Solid	PPLP Solid	
Max. Voltage (kV)	450	600-800	
Max. Current (A)	1,300	2,000	
Capacity (MW)	600	1,200-1,600	
	600kV:1,200MW		
Target	In Case of PPLP, Possibly ≒ 800kV 2,000MW		

*100°C Heat Cycle *DC -800kV OK

Future: PPLP with higher
PP Ratio (≒80%) shall be tested

Target and Possible Transmission capacity of PPLP MI Cable

	PPLP Solid	Kraft Solid
DC working (Uo)	40kV/mm	25~30kV/mm
Superimposed Imp. Voltage	100kV/mm	85~90kV/mm
Max. Conductor Temp.(Tc)	308	50~55℃
Transmission Capacity/cable	>1GW	<600MW

(PP Ratio: 40%)

Construction of DC ±500kV 1GW PPLP Solid Cable

Electric Power Interconnection between Sakhalin and Japan in "Power Bridge Project"

Item	Contents	
Inter-connection	Sakhalin ~ Ishikari ~ Kashiwazaki (410km+990km) PPLP Solid DC Submarine Cables	
Transmission Capacity	Sakhalin~Ishikari 4GW (500MW×4Cables+1GW×2Cables) → 1GW to Hokkaido Ishikari~Kashiwazaki 3GW (500MW×2Cables+1GW×2Cables → 3GW to Honshu	
Participants	F.S. (United Energy Systems (RAO) from Russia: Sumitomo Electric, Marubeni and Sumitomo Corporation form Japan)	
Total Project Cost	1 Trillions yen (P/S, Inverter/Converter, Cable & Construction) =9B\$	
Commissioning	Project Started in 2002~2003(Studied in late 1990s) 2010: 2GW	
Submarine Cable	(1GW: ±750kV×1334A/cable(or ±500~550kV×2,000A/Cable→1,800mm²)) 1,500mm²(Cu)+High-tension Square Copper Contrahelical Wire-armoring Insulation: Solid PPLP32.5mm Cable-Dimensions: Outer Dia.170mm, Aerial Weight in 70kg/m	
Cable Installation	At Shallow Sea: Burial of Submarine Cables by Water-Jet Trenching Machine	

Essential Points for Long-distant DC Submarine Cable

(1)	High Voltage	*Larger Carrying Capacity: *Compact Cable
(2)	Compact & Light Cable	*Longer Cable for Transportation *Cable for Deep Sea → Weight Endurance while Installation
(3)	Toughness against External Sea-water Pressure	*Under 1,000m in Depth, External Sea-water Pressure is 100kg/cm ² ; Liquid Insulation
(4)	Easy Production	*Cost-Reduction: *Shorter Production Period *Stable High Quality Assurance on Cable
(5)	Easy Splicing	*Shorter Splicing Time on Vessel * Stable High Quality Assurance on Splice
(6)	No Water Invasion when Something Happens	*When Damaged, Easy Definition of Replacing Length of Cable: *Easy Repair: To Fill Conductor with Liquid Insulation to Stop Sea-Water Invasion to Conductor
(7)	Fishing-Activity	*Deeper (1000m or more) Installation *No Sea-Return-Current *Parallel "Go & Return" Cable near Shore

Merits of HTS Cable

Northeast Asia Energy, Resources, Environmental and Economic Cooperation Region

Key Points for DC Submarine Cable for the Power-Bridge Project

Item	Contents	Countermeasures
[A] Fishing-Activity	For Fishermen's Union (No sea-return-current)	 Installation to 1000m or more in depth (3 sea-miles far from Japan archipelago) Liquid Insulation with the specific gravity equivalent to sea water
[B] Quality-Assurance	①Ultra long-distant cable ②Installation to deep sea ③Many splicing on the vessel	① Cable easy to produce ② Joint easy to splice □ Tough & simple tape-lapping Cable
[C] Repair	 1 Localization of damaged point 2 No sea-water-invasion 3 Suspending cable-weight while repairing 	1 Optical-fiber composited cabel 2 To fill spaces in conductor with oil 3 Tough, compact and light cable
[D] Compass Error	①Against submarines ②Against vessels near seashore	1 Narrow way for submarine cables 2 Parallel installation of "Go & Return" cables near seashore